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SUMMARY 
In this paper we describe a time-splitting method for the three-dimensional shallow water equations. The 
stability of this method neither depends on the vertical diffusion term nor on the terms describing the 
propagation of the surface waves. The method consists of two stages and requires the solution of a sequence 
of linear systems. For the solution of these systems we apply a Jacobi-type iteration method and a conjugate 
gradient iteration method. The performance of both methods is accelerated by a technique based on 
smoothing. The resulting method is mass-conservative and efficient on vector and parallel computers. The 
accuracy, stability and computational efficiency of this method are demonstrated for wind-induced prob- 
lems in a rectangular basin. 

KEY WORDS Three-dimensional shallow water equations Method of lines Time integrators Stability 
Vector and parallel computers 

1. INTRODUCTION 

In this paper a time-splitting method for the three-dimensional shallow water equations (SWEs) 
will be described. The aim of splitting methods is always to split the solution of a large and 
complicated system, which arises when applying fully implicit methods to multidimensional 
problems, into a few less complicated systems. Well-known splitting methods are alternating 
direction implicit (ADI) methods, locally one-dimensional (LOD) methods and Hopscotch 
methods.’ 

For the two-dimensional shallow water equations several of the existing numerical methods 
have been based on the AD1 method.’S3 These AD1 methods are unconditionally stable and 
therefore allow the use of large time steps. However, for large time steps these methods suffer from 
inaccuracies when dealing with complex geometries? In Reference 5 a two-stage time-splitting 
method has been developed in which these inaccuracies are absent even for large time steps. 

In this paper we will present a two-stage time-splitting method for the three-dimensional 
shallow water equations which has a strong resemblance to the method in Reference 5. We will 
use a model for the shallow water equations in which the advective terms have been omitted. The 
stability of a numerical method for this model depends on the conditions imposed by the vertical 
diffusion term and by the terms describing the propagation of the surface waves (the CFL 
condition). In two-dimensional models many methods are known in which the terms describing 
the propagation of the surface waves are treated In addition to that, in three- 
dimensional models, where a vertical diffusion term is involved, we have to treat the vertical 
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diffusion term implicitly to avoid the maximally stable time step becoming too small.' In this 
paper we will develop a two-stage method in which the vertical diffusion is treated implicitly at 
the first stage, whereas the terms concerning the propagation of surface waves are treated 
implicitly at the second stage. It will be shown that the stability of this time-splitting method 
neither depends on the vertical diffusion nor on the propagation of the surface waves. For 
computational efficiency the Coriolis term will be treated in a semi-implicit way. The Coriolis 
term hardly affects the stability, which justifies this simplification. 

At the first stage our time integration method requires the solution of a large number of 
tridiagonal systems, all of the same dimension. Since the tridiagonal systems are independent of 
each other, the solution of these systems can be computed in parallel.' 

At the second stage a linearization process is used to iteratively solve the non-linear system. 
The linearization is done in such a way that conservation of mass remains guaranteed. Then at 
each iteration step a linear, symmetric, positive definite system has to be solved. In the literature a 
large number of iteration methods have been proposed for such systems. In this paper we apply a 
Jacobi-type iteration method and a conjugate gradient iteration method for the solution of this 
system. Both iteration methods will be accelerated by a technique based on smoothing. Applica- 
tion of the smoothing matrices reduces the number of iterations considerably. Moreover, the 
smoothing matrices are very simple to implement and are highly suited for vector and parallel 
computers. 

In Reference 5 a two-stage time-splitting method has been developed for the two-dimensional 
shallow water equations. It was reported that this time-splitting method is feasible for practical 
computations. For this method a major part of the computation is involved in the non-linear 
system at the second stage. Since in our time-splitting method the water elevation is the only 
unknown in the system at the second stage, this system is of the same (two-dimensional) structure 
and thus of the same computational complexity for both two-dimensional and three-dimensional 
models. The computation time required by the other parts of our method, i.e. the computation of 
the three-dimensional velocity components, is proportional to the number of grid layers in the 
vertical direction. Therefore the efficiency of the time-splitting method developed in this paper is 
relatively even higher for three-dimensional models than for two-dimensional models. 

The accuracy, stability and computational efficiency of our time-splitting method will be 
illustrated in the numerical experiments. 

2. MATHEMATICAL MODEL 

In this section we will describe a mathematical model for the three-dimensional shallow water 
equations. The following symbols are used 

C 
d 
f 
F,  
Fb 

9 
G b  
G* 
h 
N 
t 

Chezy coefficient 
undisturbed depth of water 
Coriolis term 
bottom stress in x-direction 
surface stress in x-direction 
acceleration due to gravity 
bottom stress in y-direction 
surface stress in y-direction 
total depth ( = d + c )  
vertical diffusion coefficient 
time 
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4 0 

x, y, a 
Wf wind stress 
P density 
cp c elevation above undisturbed depth. 

velocity components in x- and y-direction 
a left-handed set of co-ordinates 

angle between wind direction and positive x-axis 

We will use a three-dimensional model in sigma co-ordinates in which the advective terms have 
been omitted. In this paper we focus on stability conditions imposed by the vertical diffusion term 
and by the terms describing the propagation of the surface waves. In future we will develop a 
numerical method for a mathematical model in which the advective terms are present. 

The mathematical model used in this paper is described by 

with boundaries 

OGXGL, OCyGB, 12020.  

Thus the domain is a rectangular basin. Owing to the sigma transformation in the vertical the 
domain is constant in time.**” We have the closed boundary conditions 

u(L, y, Q, t )=O, u(0, Y ,  a, t )=O, u(x,  0, a, t )  = 0, U ( X ,  B, 0, t )  = 0. 
The boundary conditions at the sea surface (a = 0) are given by 

- ( N E )  0 =hF,,  -( N$)o=hGs,  

and at the bottom (a= 1) 

- ( N E )  1 =hF,, -( N g ) l  = hGb. 

The bottom stress is parametrized using a linear law of bottom friction, which is of the form 

with u,, and od the components of the velocity at some depth near the bottom. The surface stresses 
are expressed as 

Fs = W, cos cp, G, = Wf sin cp. 

3. SPACE DISCRETIZATION 

For the space discretization of the equations (1)-(3) the computational domain is covered by an 
nx - ny m rectangular staggered grid. Owing to the sigma transformation we have a constant 
number of grid layers in the vertical direction. In what follows U is a grid function whose 
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components Ui, j , k  approximate the velocity u. The components Ui, j , k  are numbered lexicograph- 
ically. Likewise V, Z, D and H are grid functions for u, C, d and h respectively. Figure 1 shows 
the horizontal grid spacing. Note that D, H and Z are only computed at the upper layer. 
Furthermore, A,, is a tridiagonal matrix approximating the vertical diffusion term, O1 is an 
(nx * ny - ns) x (nx ny) matrix (a row of ns diagonal matrices of order (nx * ny), with Auk on the 
diagonal of the kth submatrix), 0, is an (nx * ny) x (nx - ny ns) matrix (a column of ns identity 
matrices of order (nx * ny),), F is a four-diagonal matrix (due to the grid staggering) of order 
(nx - ny * ns), appoximating the Coriolis term, D, and D, are bidiagonal matrices (one diagonal 
and one lower diagonal) of order (nx * ny), approximating the differential operators a/ax and a/ay 
respectively, and Ex and E, are bidiagonal matrices (one diagonal and one upper diagonal) with 
Ex= -Df and E, = -DT. The matrices D, and E, differ because of the grid staggering. We 
remark that A,, also contains the discretization of the term l/ph2. 

For the approximation of the spatial derivatives second-order central finite differences are used 
in both the horizontal and vertical directions. Now the semidiscretized system can be written in 
the form 

F 

A,, 
d 
dt 
- W =F(W)= 

-01HE, -01HD, 0 

where W =(U, V, Z)T and (Fu, F,, O)T contains the components of the wind stress. Note that the 
integrals in (3) are approximated by O1 U and O1 V respectively. 

4. TIME INTEGRATION 

In this section we develop a time integration method for the semidiscretized system (4). We apply 
a two-stage time-splitting method of the form 

where C=(F,, F,, O)T, z denotes the time step and W" is a numerical approximation to W(t) of (4) 
at t = nr. Several well-known splitting methods, e.g. AD1 methods, can be written in this form. In 

Figure 1. The staggered grid in the (x, y)-plane 
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this paper we choose 

(6) wn+ 1 1 GZ(Wn+1)= [ 0 0 -@zgE, 

[ $;F I-? H] [ FP::] =Bn, 

0 0 -@zgDx 

- 0 1  H"+ Ex - 0 1  H"+ D, 0 

Apart from the Coriolis term F, all terms are treated in a symmetrical way. When we neglect the 
Coriolis term, the time-splitting method (5H6) is second-order-accurate in time. 

The structure of the resulting systems at both stages determines the efficiency of this time- 
splitting method. At the first stage we have to solve the system 

I-*TA, 0 un+ 112 

(7) 

where B" contains the discretizations at time level t = nz. It is evident that the Z-component can be 
computed straightforwardly. For the U- and V-components the implicit treatment of the vertical 
diffusion term requires the solution of nx - ny tridiagonal systems of order n ~ . ~  For computational 
efficiency the Coriolis term is treated in a semi-implicit way. Although an implicit treatment of the 
Coriolis term for the V-component (see (7)) prohibits the U- and V-components from being 
computed in parallel, we prefer this choice because of accuracy considerations. The results are 
more accurate than in the case of a fully explicit treatment of the Coriolis term, especially when 
large time steps are used. 

At the second stage the terms describing the propagation of the surface waves are treated 
implicitly. This system reads 

u n +  1 I 0 3r02gDx 
9 (8) 0 I :.eZgEy] [ Vn+1 ] =BR+1/2 

zn+l  it O1 H"+ Ex $T 0 €I"+ D, I i 
where B"+ l I 2  contains the discretizations at time level t = (n + 1/2)r. The equations for the U- and 
V-components are linear and are not coupled with each other. They are only coupled with the 
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equation for the Z-component. Therefore the components Un+l and V"+' can easily be 
eliminated from (8) and a system in the unknown Zn+l  results. Thus at the second stage the 
continuity equation (3) and the water elevation gradient in the momentum equations (l), (2) are 
treated implicitly. This approach was originally proposed in Reference 11 and has been applied 
by many 

We now describe this system for each cell (i, j) of component Z. The grid sizes in the x- and 
y-directions are denoted by Ax and Ay respectively. Then the system for Zi, reads 

i = l ,  . . . ,  nx 
j=1 , .  . . ,ny 

= Bi, n + 1 / 2  j for (9) 

where - 
fl, = Z ;  j + + ( ~ i ,  j +  D ~ ,  j -  ), Hn 1, J .=Z? 1, J . + s (Di ,  j+D;+ , ,  j ) .  

Note that fi and E? differ because of the grid staggering. System (9) is a non-linear equation 
because Hi, contains the component Zi, j .  When system (9) has been solved, the values for the 
components Un+' and Vn+' can be computed by back substitution. 

System (9) can be written in the form 

(10) A(zn + 1 ) zn + 1 = B: + 1/Z 

where B:+ 'I2 contains the discretizations at t =(n ++)T for the Z-component. For its linearization 
we introduce the process 

z (1 1) A(Z(4)) 2 ' 4  + 1) = B" + 1/2 

with Z(o)=Zn+1/2. In (11) the upper index (4) denotes the iteration index. The matrix A(Z(')) is a 
symmetric and strictly diagonal dominant matrix with positive values on the main diagonal and 
negative ones elsewhere because we require that D + Z(@ (= H(4)) >O. Thus system (1 1) is positive 
definite. In Section 6 we will discuss iteration methods for the solution of system (11). 

It should be noted that the water elevation is the only unknown in system (1 1). Thus this system 
is of the same (two-dimensional) structure and computational complexity for both two-dimen- 
sional and three-dimensional models. This is an important feature of the time integration method 
(5)-(6), because for two-dimensional problems a major part of the computation is required for the 
solution of this system. 

The linearization process (1 1) was first used by Leendertse.2 Conservation of mass remains 
guaranteed by this process. A slightly different linearization process has been introduced in 
Reference 5. In our numerical experiments (see Section 7) we obtained comparable results for 
both linearization processes. The linearization process will be a topic of further research. 

5. STABILITY 

We now analyse the stability of method (5H6) with the matrix method. In this section we omit 
the Coriolis force and the inhomogeneous term. It is well known that the Coriolis force hardly 
affects the stability. In this section we make plausible that the simplified method is un- 



THREE-DIMENSIONAL SHALLOW WATER EQUATIONS 525 

conditionally stable. The stability analysis used here is similar to the one described in Refer- 
ence 12. That paper was devoted to a study of the stability and convergence properties of the 
Peaceman-Rachford AD1 method when applied to initial boundary value problems, including 
non-linear ones. 

Since we have omitted the Coriolis force and the inhomogeneous term, we have that (cf. (6)) 

F' (W" ) = F2 (W" ) = A" W", G'(W")=G2(W")=B"W", 

where 

(12) 

1 Aaa 0 0 0 0 -@2gDx 
A"=[ 2 :], B " = [  0 0 -@2gE, 0 

-OIH"Ex -O,H"D, 

Then method (5)-(6) can be written in the form 
w"+ 1 = ( I - + ~ B ~ +  1)- 1 (I  it^"+ W ) ( I - + ~ A ~ +  112)- 1 ( I + + ~ B " ) ~ .  

Let us now define the amplification matrix 

C" = (I - B" + 1 ) - 1 (I + 2 A" -+ 1/2) (I - 4 ~  A"+ '12)  - 1 (I + $rB"). 

In order to guarantee that method (12) is stable, we have to require (1 n l Z J  C'II to remain 
uniformly bounded for all values of n and t such that 

11 :a C' 11 < K for 0 -= nt < T and K ~onstant . '~  (13) 

Let us now verify this condition for the numerical method (12). We have that 

" - 2  

i = O  
x n )~(I+.ttBi+')-'(I-3tBi+1)(I++tAi+1/2)(I-~tAi+1~2)-1 11 llI++rB0 11 

It can be verifed that both the matrix A" and the matrix B" have their eigenvalues in the left half- 
plane. The eigenvalues of the matrix A" are even real non-positive. Therefore we have that 

11 (I ++TB'+~)(I-+TB~+ )-' 11 < 1 and I I ( I + ~ T A ' + ' ~ ~ ) ( I - ~ ~ A ' + ' / ~  2 )-'11<1 
for i=O, . . . , n-1. 

Using these relations, we obtain that 

It is evident that only the explicit part (I +*tBo) may cause problems. In general, it is not possible 
to find an upper bound for 11 (I +$rB0) 11. In such a situation we may stabilize our integration 
method by computing the first approximation W' by the backward Euler-LOD method and 
apply method (12) for n 2 1. This technique has been proposed in Reference 12. We thus consider 
the method with first time step 

w1 =(I - i 2 ~ 1 ) -  1 (I + ~ 1 / 2 ) -  1 wo, ( 1 4 4  
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and for n >  1, 

On a fixed space grid the LOD method (14a) is only first-order-accurate in time, but since we only 
perform one LOD step, method (14) is still second-order-accurate on fixed space grids. Using 
method (14), we obtain that 

Now condition (13) is satisfied. We have no practical experience with method (14). In the 
numerical experiments no large errors were found in the original method (12) even for very large 
time steps. Thus there was no need for stabilization. In Reference 12 the authors advise the use of 
one or more LOD steps in situations where the initial values contain large errors. This might 
occur when experimental data with significant errors are used as initial values. 

6. SOLVING THE LINEAR SYSTEMS 

In this section we describe how the linear systems at both stages, i.e. system (7) and system (1 l), 
are solved. At the first stage we apply the Gaussian elimination (double-sweep) method for the 
solution of the tridiagonal systems. Since this is a recursive method, it seems to be unattractive on 
vector and parallel computers. However, we make use of the fact that a large number of 
tridiagonal systems of the same dimension have to be solved. In Reference 9 the computational 
efficiency of this approach has been demonstrated on vector and parallel computers. Moreover, 
this method requires a minimal number of operations. 

At the second stage we have to solve the linear, symmetric system (1 1). In the literature a large 
number of iterative methods have been proposed for such systems. Here we will apply a Jacobi- 
type method and a conjugate gradient (CG) method. Both methods will be accelerated by a 
preconditioning technique. Before discussing the iteration methods, we first consider the pre- 
conditioning. 

The essence of preconditioning is the determination of a matrix S such that the system 

SAZq+ = SB 

has a much smaller condition number than the original system AZ4+'=B. For the pre- 
conditioning of system (1  1) we will use a smoothing matrix S of the form S = P(D), where P(z) is a 
polynomial and D is some matrix. The matrix D will be a difference matrix of which the 
eigenvalues are assumed to be in the interval [ - 1, O].I4 The polynomial P(z) will be chosen such 
that P(0) = 1 and the eigenvalues of S are in the interval [0, 13. First we discuss the choice of the 
matrix D. In our theoretical considerations we assume that D is equal to the normalized matrix A, 
i.e. 

where p (  ) denotes the spectral radius. We emphasize that in practice it is generally not attractive 
to choose D according to (1 5) and we shall employ some cheap approximation to the normalized 
matrix. If D is defined according to (15), then the eigenvalues of SA=P(D)A are given by 
p(A)zP(z), where z runs through the spectrum of D. Now we are looking for a polynomial such 
that the magnitude of zP(z) on [ - 1, 01 is sufficiently small. In this paper we choose the 
polynomial' 

T , ( X )  = cos cpcos - 1 (x)] . (16) 
T 2 k -  1 (1 + 22) - 1 

k =  1 2 
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0-  

1 
3 

It has been proved that the spectral radius of the matrix SA is minimized by the polynomial (16) 
when the matrix A has real non-positive eigenvalues and p= l.14 For p= 1 we have that (16) is 
equal to 

9 

Tzq(1+22)- 1 1 - 
22 49 * 

p2, - l(4' 

F,=(1/4) 

The factorization in (16) makes it possible to implement the smoothing operator S in a very 
efficient way. This is stated in the following theorem. 

2 1  
1 2  
1 0 

1 

\ 

Theorem 1 

Let S=P(D) with P(z)  defined by (16) and let the factor matrices Fj be defined by 

Fj=I+pDj, where Dj+,=4Dj(I+Dj) with D , = D  and j > l .  (18) 
Then S = Pzq - (D) can be factorized according to 

Thus the smoothing matrix S consists of 4 factor matrices. For a proof of Theorem 1 we refer to 
Reference 15. 

The most efficient implementation of S is based on the factorization property in Theorem 1. 
However, in two or more dimensions the precomputation of the factor matrices Fj defined by (18) 
is not attractive. Therefore we consider an alternative smoothing matrix S which consists only of 
one-dimensional operators. For our two-dimensional problem (1 1) we apply one-dimensional 
smoothing in the x- and y-directions successively. An extra advantage of the splitting in one- 
dimensional operators is that the application of the smoothing operator S is now hardly 
complicated when the domain is irregular.'O 

As mentioned before in practice we shall choose D equal to some cheap approximation of (15). 
Since the smoothing matrix S consists of one-dimensional operators, we choose 

O l  
1 I-: -2 1 . . .  

. .  * 
D = (1/4) 

1 - 2  1 
1 - 1  

. . .  
. .  * 

D = (1/4) 

1 - 2  1 
1 - 1  

If the factor matrices of (19) are computed in advance, then the evaluation of P(D) only requires 
4 matrix-vector operations. Moreover, the factor matrices exhibit a regular pattern which can be 
exploited for an efficient implementation. For example, applying Theorem 1 for matrix D in (20), 
we find the factor matrices 

1 
2 1 

1 2 
1 

1 
0 
2 
0 

1 
0 1  
2 0  1 

o l  

etc. 

Evidently the matrix-vector multiplications with these essentially three-diagonal factor matrices 
are extremely cheap, especially on vector computers. 
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We shall now discuss the application of the Jacobi-type iteration method and the CG iteration 
method to system (1 1). 

6.1. The smoothed Jacobi method 

For the solution of system (11) we apply the smoothed Jacobi methodi4 

where Z, is the kth iterate, o is a relaxation parameter and S is the smoothing matrix described in 
Theorem 1 with D as in (20). For the smoothed Jacobi method we choose p=1 (see (18)). As 
mentioned in the previous section, the smoothing matrix S consists of q smoothing factors. It has 
been demonstrated that one should not iterate with a fixed value of q.14 Therefore we choose the 
number of smoothing factors at the kth iteration step equal to kmod(q+ l), which yields the 
cyclic sequence of 1,2, . . . , q, 0, 1,2, . . . , q, 0, 1,2, . . . , q, . . . smoothing factors 

Let us now examine how the relaxation parameter o should be chosen. For the spectral radius 
of A we have 

Similarly, for the spectral radius of SA we have that 

Following the analysis in Reference 14, we obtain 

o = 2/p(SA). (23) 

However, in our case we do not choose o fixed for each component Zi, We make o dependent 
on the local depth, i.e. 

In the case of a fixed relaxation parameter we observed in our experiments that (23) was the 
optimum relaxation parameter. However, we obtained much better results with the relaxation 
parameter in (24) when an irregular bottom topography was used. 

6.2. The smoothed CG method 

CG method. The preconditioned CG method can be formulated as follows. 
The second iteration method that we applied for the solution of system (1 1) is a preconditioned 

Let Zo be an initial guess for ZQ+') and 

Ro = B- AZO, Po = SR, . 



THREE-DIMENSIONAL SHALLOW WATER EQUATIONS 529 

For k = O ,  1,2, . . . until convergence, 

R:+ 1 (SRk+ 1) 
Rk' (SRk ' f l k =  

pk + 1 =sRk + 1 + flk pk. 

In (25) the matrix S denotes the preconditioning matrix. It is well known that the un- 
preconditioned CG method can be implemented efficiently on vector and parallel computers, but 
in general the preconditioned version is much more troublesome. In the literature various 
techniques for the construction of a suitable preconditioning matrix have been proposed. l6 Here 
we choose a positive definite matrix S of the form S = P(D), where D is the difference matrix in (20) 
and P(z )  is the polynomial (16). By choosing p~ [0, 1) we obtain that S is positive definite. This 
preconditioning matrix can be implemented efficiently on vector and parallel computers, because 
only matrix-vector operations are involved. The convergence is improved by this precondi- 
tioning matrix since the condition number of SA is much smaller than that of A. It should be 
noted that this preconditioning matrix S is independent of A, whereas in general the pre- 
conditioning matrix S is some approximation to the inverse of A. 

7. NUMERICAL EXPERIMENTS 

In this section we illustrate for a number of test problems the accuracy and the computational 
aspects of the time integration method (5H6). In the test problems the water is initially at rest and 
the motion in the closed basin is generated by a periodic wind stress. Thus a wind-driven 
circulation is gradually developed. 

The following parameter values are used in all experiments: 

f=0-44/3600= 1.22 x lop4 
g=9.81 ms-' 

N = 0*065/p 
p = 1025 kg m-3 
rp =45" (north-eastern wind). 

The experiments have been carried out on an ALLIANT FX/4. This mini-supercomputer consists 
of four vector processors. In all experiments we have used both the vector optimization and the 
parallel optimization. 

At the end of the integration process the numerical solution was compared with a reference 
solution computed on the same grid with T = 60 s. The reference solution may be considered as an 
almost exact solution of our semidiscretized system (4). Thus the accuracy results listed in this 
section represent the error due to the time integration. 

In the experiments we used a rectangular basin of 400 km by 800 km with different bottom 
topographies. For the grid sizes we have chosen Ax = 10 km, Ay = 10 km and A g  = 0.2 m. Thus the 
computations have been performed on a grid with nx = 41, ny = 8 1 and ns = 5. We integrated over 
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a period of 5 days with the time-dependent wind stress 

W,= 1-5 [ 1 +05sin (24 Z i ~ o ) ] .  

Thus we have a periodically varying (north-eastern) wind with a period of 24 h. To measure the 
obtained accuracy, we define 

ERR-x: maximal global error for component x, with x = [, u or u, 
compared with the reference solution at the end point T =  120 h. (27) 

In the first experiment we have a plane bottom with a depth of 45 m., except for a deeper 
channel in a diagonal direction (depth 65 m). This is shown in Figure 2. In the second experiment 
we use a basin with an inclined bottom of a depth of 20 m at one end and 340 m at the other end 
(see Figure 3). 

In Table I we list the maximal global errors for the test problem with a channel in a diagonal 
direction. In this experiment the maximal values for [, u and u are about 2.6 m, 0.4 ms-' and 
1.1 ms-' respectively. We observed that after a few days the solution became periodic with a 
period of 24 h for any time step T. For the largest time steps the accuracy results seem to be 
unacceptable. However, a careful examination of the integration process shows that even in the 
case of large time steps the maximal and minimal values of the periodic numerical solution are 
very close to the extreme values of the reference solution. The differences are of the order of a few 
centimetres. Thus our integration method hardly introduces a dissipation error. However, for the 
large time steps, errors in the phase of the periodic solution appear. For example, in the case of 
.r=4800 s the phase error is about 1 h. When we compare the numerical solution computed with 
~ = 4 8 0 0  s at T= 121.33 h with the reference solution at T= 120 h, the maximal global errors for 

45 m. 

400 km. 

Figure 2 Plane bottom with a channel Figure 3. Inclined bottom 

Table I. Test problem with a channel in a diagonal direction 

600 0.038 0.006 0-018 
1200 0.087 0.014 0.04 1 
2400 0.212 0.035 0.103 
4800 0.549 0.088 0.269 
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the three components are 0-124 m, 0.050 m s - l  and 0.054 m s- l  respectively. This is significantly 
less than in Table I. 

We now discuss the computational efficiency of the time integration method (9, (6). To 
represent the results we use the following notation: 

4 
cc smoothing coefficient (see (16)) 
TOTAL total computation time 
ITER 
PREC 
# ITER 
CONV 

At each integration step the convergence factor is defined by (r(k))’Ik, where k is the smallest value 
for which the residue (see (10)) 

number of smoothing factors (see (19)) 

computation time for the iteration process 
computation time for the preconditioning 
number of iterations averaged over the integration steps 
convergence factor averaged over the integration steps. 

r(k)= ~ ~ B ~ + l ’ z - A z k ~ ~ w  

drops below a certain tolerance. In the experiments we required that r(k)< 
In Table I1 we list the computation times and the convergence results for the time integration 

method (5)-(6) in which either the smoothed Jacobi (SJAC) method or the smoothed CG (SCG) 
method has been applied. For both iteration methods we vary the number of smoothing factors. 
The case q=O corresponds to the unpreconditioned case. For the parameter p in the pre- 
conditioning matrix of the SCG method we experimentally derived an optimum value. As 
mentioned in Section 6.1, for the SJAC method we have p= 1. 

In the case of a time step of 4800 s we have listed the results for various values of q. When no 
preconditioning is applied, the Jacobi method converges extremely slow in this case. However, by 
applying four smoothing factors the number of iterations is reduced by a factor of 18, while the 
computation time for the iteration process is reduced by a factor of 5.5. 

Table 11. Computation times for the channel problem 
~~ ~~ ~ 

t Method q p TOTAL ITER PREC #ITER CONV 
(d (4 (4 (4 

600 SCG 0 395.6 703 0 3.0 023 
MAC 1 473.0 148-8 21-5 8.4 0.56 

1 200 SCG 0 233.5 698 0 9.2 0.60 
SJAC 2 318.2 154.7 47.7 17.0 0.72 

2400 SCG 0 169.5 87-5 0 26.0 081 
1 0.9 156.8 7 5  1 25-4 14-1 068 
2 075 161.3 795 37.9 11.4 0.6 1 

SJAC 3 220.1 137.7 50.9 26.3 0.8 1 

4800 SCG 0 155.3 114.7 0 75-4 0 9  1 
1 0925 118.9 77.9 28.2 31-2 080 
2 0.85 109.9 695 35.8 21.9 074 

SJAC 0 827.1 7867 0 8696 0.99 
1 517.3 4713 1002 297.2 098 
2 279-0 238.2 75.0 115.8 094 
3 193.1 151.8 64.1 550 0.88 
4 1842 143.8 62-1 48.6 0.86 
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When no preconditioning is applied, the CG method has a much better convergence behaviour 
than the Jacobi method. For the CG method it is even better to apply no preconditioning in the 
case of small time steps, since the number of iterations is already very limited. However, for large 
time steps both the number of iterations and the computation time are reduced when the 
preconditioning is applied. 

In Table I1 we have listed the optimum values for p. For values in the neighbourhood of the 
optimum value the number of iterations hardly increases. Thus the choice of the parameter p in 
the preconditioning matrix S of the SCG method is not critical. In this experiment the SCG 
method requires less computation time than the SJAC method. 

In Table I11 we list the maximal global errors for the test problem with an inclined bottom (see 
Figure 3). In this experiment the maximal values for (, u and u are about 1.2 m, 0.7 m sYi and 
1.4 m s - '  respectively. The results are comparable with the results in the first experiment. After a 
few days the numerical solution also became periodic with a period of 24 h for any time step t. 
However, in this experiment the phase errors are much smaller. 

The computational results in this experiment, which are listed in Table IV, are also comparable 
with the results of the first experiment. Both the number of iterations and the computation time 
for the iteration process are reduced when the preconditioning is applied. As in the first 
experiment, the SCG method requires less computation time than the SJAC method. 

In the experiments we used both the vector and the parallel optimization of the ALLIANT 
FX/4. For both iteration methods the computation time was reduced by about a factor of three 

Table 111. Test problem with an inclined bottom 

z ERR-I; ERR-# ERR+ 
(s) (m) (ms-') (ms-') 

600 0.0 16 0 0 0 5  0.003 
1200 0.0 18 0.008 0.005 
1800 0.035 0.0 12 0.009 
3600 0.122 0.032 0.034 

Table IV. Computation times for the problem with an inclined bottom 

T Method q P Total ITER PREC #ITER CONV 
(4 (4 (4 (4 
600 SCG 

SJAC 
1200 SCG 

SJAC 
1800 SCG 

SJAC 
3600 SCG 

SJAC 

0 
1 

0 
2 

0 
1 0.85 
3 

0 
1 0.9 
2 0 8  
4 

432-2 
5704 

326.6 
4133 

271.5 
253.7 
357-5 

276.1 
193.8 
240-2 
257.5 

108.1 
24 1 -2 

163.9 
248.3 

160.0 
143.9 
247.9 

221.3 
141.2 
186-4 
203-0 

0 
41-4 

0 
71.9 

0 
48.1 

100.3 

0 
5 1.6 
91-9 
91.4 

7.4 
15.8 

24.4 
28.2 

39.7 
22.7 
38.4 

109.9 
47.3 
45.0 
48.6 

049 
068 

0.75 
0.77 

0.84 
0.73 
0.81 

0.92 
0.82 
082 
0-82 
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Table V. Computation times for different numbers of vertical layers 

ns TOTAL ITER PREC #ITER CONV 
(4 (4 6) 

1 847 765 26.0 28.5 079 
2 94.2 77.1 27,2 30.2 0.80 
5 118.9 779 28.2 31.2 080 

10 160.1 80.5 28.5 31.6 0.80 
25 278.5 81.3 29.0 3 1.9 0.80 

by the vectorization and also by a factor of three by the parallel optimization. However, not only 
the computation time for both iteration methods but also the computation time for our 
integration method (5H6) was reduced by the above-mentioned factors. This shows that our 
integration method (5H6), in which either the SCG method or the SJAC method has been applied, 
can be implemented efficiently on vector and parallel computers. 

We now carry out an experiment in which we vary the number of layers in the vertical 
direction. Our aim is to illustrate the efficiency of the time integration method (5H6) for three- 
dimensional shallow water problems. We have chosen the bottom topography of the first 
experiment (i.e. a plane bottom with a deeper diagonal channel) and a time step of 4800 s. The 
SCG method is used with q = 1 and p = 0-925 (see Table 11). Table V presents the computation 
times and the convergence results for different numbers of grid layers in the vertical direction. The 
number of vertical grid layers is denoted by ns. 

Since the system that we have to solve at the second stage is of the same computational 
complexity for both two-dimensional and three-dimensional problems, the results in the last four 
columns are more or less constant. Thus the computation time required for the solution of this 
system is independent of the number of vertical grid layers. In the two-dimensional case 
(i.e. ns= 1) a major part of the computation time is required for the solution of the system at the 
second stage (about 90%). However, for three-dimensional experiments the computation time 
for the solution of the system at the second stage becomes relatively less. For example, in the 
case of ns= 10 about half the computation time is required for the solution of this system. This 
percentage depends on the time step used. In this experiment we used a rather large time step. For 
smaller time steps the percentage of computation time required for the solution of the system is 
significantly less. In conclusion, the time integration method (5H6) is very suited for three- 
dimensional problems, especially when large time steps are used. 

8. CONCLUSIONS 

In this paper we have presented a two-stage time-splitting method for the three-dimensional 
shallow water equations. The method has been developed in such a way that its stability neither 
depends on the vertical diffusion term nor on the terms describing the propagation of the surface 
waves. At the first stage a large number of tridiagonal systems of the same dimension have to be 
solved. At the second stage the system to be solved is symmetric, five-diagonal and positive 
definite. For the solution of the latter system we have developed a smoothed Jacobi (SJAC) 
method and a smoothed CG (SCG) method. Both methods have been accelerated by a technique 
based on smoothing. The smoothing matrices have been chosen in such a way that the number of 
iterations was moderate in all cases. Moreover, the smoothing matrices can be implemented 
efficiently on vector and parallel computers, because only matrix-vector operations are involved. 
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It should be noted that the smoothing matrices for the CG method are independent of the system 
to be solved. In the experiments the SCG method required less computation time than the SJAC 
method. 

It has been shown that the time integration method presented in this paper is very suited for 
three-dimensional problems. When we apply our method to two-dimensional problems, the 
system to be solved at the second stage is the most time-consuming part. In three-dimensional 
models the same amount of computation time is required, because this system is independent of 
the number of grid layers in the vertical direction. The computation time for the other parts of the 
method is proportional to the number of vertical grid layers. Therefore the time-splitting method 
is relatively more efficient for three-dimensional problems than for two-dimensional problems. It 
was reported that a time-splitting method of this form is already feasible for practical com- 
putations of two-dimensional  problem^.^ 

Finally, the method is mass-conservative and can be implemented efficiently on vector and 
parallel computers. 
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